Self-Similar Accretion Flows with Convection
نویسندگان
چکیده
We consider height-integrated equations of an advection-dominated accretion flow (ADAF), assuming that there is no mass outflow. We include convection through a mixing length formalism. We seek self-similar solutions in which the angular velocity and sound speed scale as R, where R is the radius, and consider two limiting prescriptions for the transport of angular momentum by convection. In one limit, the transport occurs down the angular velocity gradient, so convection moves angular momentum outward. In the other, the transport is down the specific angular momentum gradient, so convection moves angular momentum inward. We also consider general prescriptions which lie in between the two limits. When convection moves angular momentum outward, we recover the usual self-similar solution for ADAFs in which the mass density scales as ρ ∝ R. When convection moves angular momentum inward, we again find this solution if the viscosity coefficient α > αcrit1 ∼ 0.05. For small values of α, however, we find a non-accreting solution, which we call a “convective envelope,” in which ρ ∝ R. Two-dimensional numerical simulations of ADAFs with values of α <∼ 0.03 have been reported by several authors. The simulated ADAFs exhibit convection. By virtue of their axisymmetry, convection in these simulations moves angular momentum inward, as we confirm by computing the Reynolds stress. The simulations give ρ ∝ R, in good agreement with the convective envelope solution. The R density profile is not a consequence of mass outflow. The relevance of these axisymmetric low-α simulations to real accretion flows is uncertain. Subject headings: Accretion, accretion disks — convection — hydrodynamics — turbulence
منابع مشابه
Convection in radiatively inefficient back hole accretion flows
Recent numerical simulations of radiatively inefficient accretion flows onto compact objects have shown that convection is a general feature in such flows. Dissipation of rotational and gravitational energies in the accretion flows results in inward increase of entropy and development of efficient convective motions. Convectiondominated accretion flows (CDAFs) have a structure that is modified ...
متن کاملThe Role of Thermal Conduction in Accretion Disks with Outflows
In this work we solve the set of hydrodynamical equations for accretion disks in the spherical coordinates (r,θ,ϕ) to obtain the explicit structure along θ direction. We study a two-dimensional advective accretion disc in the presence of thermal conduction. We find self-similar solutions for an axisymmetric, rotating, steady, viscous-resistive disk. We show that the global structure of an advec...
متن کاملA Simplified Solution for Advection Dominated Accretion Flows with Outflow
The existence of outflow in the advection dominated accretion flows has been confirmed by both numerical simulations and observations. The outow models for ADAF have been investigated by several groups with a simple self similar solution. But this solution is inaccurate at the inner regions and can not explain the emitted spectrum of the flow; so, it is necessary to obtain a global solution for...
متن کاملSelf-similar structure of magnetized ADAFs and CDAFs
We study the effects of a global magnetic field on viscously-rotating and vertically-integrated accretion disks around compact objects using a self-similar treatment. We extend Akizuki & Fukue’s work (2006) by discussing a general magnetic field with three components (r, φ, z) in advection-dominated accretion flows (ADAFs). We also investigate the effects of a global magnetic field on flows wit...
متن کاملAdvection-dominated Accretion: a Self-similar Solution
We consider viscous rotating accretion flows in which most of the viscously dissipated energy is stored as entropy rather than being radiated. Such advection-dominated flows may occur when the optical depth is either very small or very large. We obtain a family of self-similar solutions where the temperature of the accreting gas is nearly virial and the flow is quasi-spherical. The gas rotates ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999